

Dask-CHTC

Dask-CHTC builds on top of
Dask-Jobqueue [https://jobqueue.dask.org/]
to spawn
Dask [https://distributed.dask.org/]
workers in the
CHTC [http://chtc.cs.wisc.edu/]
HTCondor pool [https://research.cs.wisc.edu/htcondor/].
It also provides tools for
running Jupyter notebook servers in a controlled way on CHTC submit nodes,
which you may find helpful for providing an interactive
development environment to use Dask in.

Note

If you’re interested in using Dask at CHTC but have never used CHTC resources
before, please
fill out the CHTC contact form [http://chtc.cs.wisc.edu/form]
to get in touch with our Research Computing Facilitators.
If you’ve already had an engagement meeting, send an email to
chtc@cs.wisc.edu and let them know you’re interested
in using Dask.

Attention

We currently only support the Dask-CHTC workflow on the
submit3.chtc.wisc.edu submit node.
If you do not have an account on submit3.chtc.wisc.edu, you will need to
request one.

Attention

Dask-CHTC is prototype software!
If you notice any issues or have any suggestions for improvements,
please write up a
GitHub issue [https://github.com/JoshKarpel/dask-chtc/issues]
detailing the problem or proposal.
We also recommend “watching” the
GitHub repository [https://github.com/JoshKarpel/dask-chtc]
to keep track of new releases, and upgrading promptly when they occur.

These pages will get you started with Dask-CHTC:

	Installing Dask-CHTC
	How to install Python and Dask-CHTC on a CHTC submit node.

	Running Jupyter through Dask-CHTC
	How to use Dask-CHTC to run a Jupyter notebook server on a CHTC submit node.

	Networking and Port Forwarding
	Information on CHTC networking and
how to forward ports over SSH,
which will allow you to connect to
Jupyter notebooks and Dask dashboards running on CHTC submit nodes.

	Dask Cluster Creation
	A brief example Jupyter notebook,
showing how to start up a CHTCCluster
and use it to perform some calculations.

These pages have information for troubleshooting problems and handling
specific use cases:

	Troubleshooting
	Solutions and advice for tackling specific problems that might arise
while using Dask-CHTC.

	Configuration
	Information on how to configure Dask-CHTC and the Dask JupyterLab extension.

	Building Docker Images for Dask-CHTC
	Information on how to build Docker images for use with Dask-CHTC.

Detailed information on the Python API
and the associated command line tool
can be found on these pages:

	API Reference
	API documentation for dask_chtc.

	CLI Reference
	Documentation for the dask-chtc CLI tool.

Installing Dask-CHTC

Dask-CHTC is a Python package that allows you to run
Dask clusters
and Jupyter notebook servers
on CHTC submit nodes.
To run Dask on CHTC, you will need to

	Install a “personal” Python on a CHTC submit node.

	Install whatever other packages you want, like
numpy, matplotlib, dask-ml, or jupyterlab.

	Install dask-chtc itself.

Attention

We currently only support the Dask-CHTC workflow on the
submit3.chtc.wisc.edu submit node.
If you do not have an account on submit3.chtc.wisc.edu, you will need to
request one.

Install a Personal Python

You will need a Python installation on a CHTC submit node to run your code.
You will be able to manage packages in this Python installation just like
you would on your local machine, without needing to work with the CHTC
system administrators.

Since you do not have permission to install packages in the “system” Python
on CHTC machines (and since you should never do that anyway), you will need to
make a “personal” Python installation. We highly recommend doing this using
Miniconda [https://docs.conda.io/en/latest/miniconda.html], a minimal
installation of Python and the conda
package manager [https://docs.conda.io/en/latest/].

To create a Miniconda installation, first log in to a CHTC submit node
(via ssh). Then, download the latest version of the Miniconda installer
using wget:

$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

Run the installer using bash:

$ bash Miniconda3-latest-Linux-x86_64.sh

The installer will ask you to accept a license agreement, and then ask you
several questions about how to install Miniconda itself.
We recommend that you do “initialize Miniconda3 by running conda init”
when prompted; this will cause Python you just installed to be your default
Python in future shell sessions (instead of the system Python).

You may need to begin a new shell session for the commands in the next sections
to work as expected.
To check that everything is hooked up correctly,
try running these commands:

$ which python
$ which conda
$ which pip

They should all resolve to paths inside the
Miniconda installation you just created.

Install Packages

Your personal Python installation will be used to run all of your code, so you
will need to install any packages that you depend on,
either inside your code (like numpy)
or to do things like run Jupyter notebooks (provided by the jupyter package).

To install packages in your new personal Python installation, use the
conda install command.
For example, to install numpy, run

$ conda install numpy

You may occasionally need a package that isn’t in the
standard Anaconda channel [https://anaconda.org/anaconda/repo].
Many more packages, and more up-to-date versions of packages,
are often available in the community-created
conda-forge channel [https://conda-forge.org/]
channel.
For example, to install Dask from conda-forge instead of the default channel,
you would run

$ conda install -c conda-forge dask

where -c is short for --channel.

Some packages are provided by other channels.
For example, PyTorch asks you to install from their own conda channel:

$ conda install -c pytorch pytorch

conda is mostly compatible with pip; if a package is not available
via conda at all, you can install it with pip as usual.

Install Dask-CHTC

Attention

These instructions will change in the future as Dask-CHTC stabilizes.

To install Dask-CHTC itself, run

$ pip install --upgrade git+https://github.com/CHTC/dask-chtc.git

To check that installation worked correctly, try running

$ dask-chtc --version
Dask-CHTC version x.y.z

If you don’t see the version message or some error occurs, try re-installing.
If that fails, please
let us know [https://github.com/CHTC/dask-chtc/issues].

What’s Next?

If you like working inside a Jupyter environment, you should read the next
two pages: jupyter and Networking and Port Forwarding.

If you are going to run Dask non-interactively (i.e., through a normal Python
script, not a notebook), then you’re almost ready to go.
Pull the CHTCCluster and Dask client creation code from Dask Cluster Creation
and start computing!

This pages assumes that Jupyter is available.
For more details on connecting to
Jupyter, see the guide on port forwarding.
This page will only detail how to start Jupyter.

Warning

Do not run Jupyter notebook servers on CHTC submit nodes except through
the process described on this page.

Launching Jupyter with this process allows the CHTC admins to effectively
monitor resource usage in the Jupyter process and debug/info messages to be
more easily displayed. If you persist the Jupyter session through other
means like tmux, the CHTC admins may kill your entire tmux session if it
consumes too much CPU and memory.

Running Jupyter through Dask-CHTC

Attention

You may want to interact with your Dask cluster through a
Jupyter notebook [https://jupyter.org/].
Dask-CHTC provides a way to run a Jupyter notebook server on a CHTC submit node.

Warning

Jupyter must be installed, which amounts to running conda install
jupyterlab or adding jupyter to your environment.yml file. For more
detail, see the Jupyter install documentation [https://jupyter.org/install],

You can run a notebook server via the Dask-CHTC command line tool, via the
jupyter subcommand.
The command line tool will run the notebook server as an HTCondor job.
To see the detailed documentation for this subcommand, run

$ dask-chtc jupyter --help
Usage: dask-chtc jupyter [OPTIONS] COMMAND [ARGS]...

 [... long description cut ...]

 Commands:
 start Start a Jupyter notebook server as a persistent HTCondor job.
 run Run a Jupyter notebook server as an HTCondor job.
 status Get information about your running Jupyter notebook server.
 stop Stop a Jupyter notebook server that was started via "start".

The four sub-sub-commands of dask-chtc jupyter
(run, start, status, and stop)
let us run and interact with a Jupyter notebook server.
You can run
dask-chtc jupyter <subcommand> --help
to get detailed documentation on each of them, but for now, let’s try out the
run subcommand.

Using the run subcommand

The run subcommand is the simplest way to launch a Jupyter notebook server.
It is designed to mimic the behavior of running a Jupyter notebook server on
your local machine. Any command line arguments you pass to it will be
passed to the actual jupyter command line tool.

Jupyter Lab instances are normally started with jupyter lab.
The equivalent command for Dask-CHTC is dask-chtc jupyter run lab:

$ dask-chtc jupyter run lab
000 (7858010.000.000) 2020-07-13 10:38:46 Job submitted from host: <128.104.100.44:9618?addrs=128.104.100.44-9618+[2607-f388-107c-501-92e2-baff-fe2c-2724]-9618&alias=submit3.chtc.wisc.edu&noUDP&sock=schedd_4216_675f>
001 (7858010.000.000) 2020-07-13 10:38:47 Job executing on host: <128.104.100.44:9618?addrs=128.104.100.44-9618+[2607-f388-107c-501-92e2-baff-fe2c-2724]-9618&alias=submit3.chtc.wisc.edu&noUDP&sock=starter_5948_a76b_2712469>
[... Jupyter startup logs cut ...]
[I 10:38:51.582 LabApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 10:38:51.587 LabApp]

 To access the notebook, open this file in a browser:
 file:///home/karpel/.local/share/jupyter/runtime/nbserver-2187556-open.html
 Or copy and paste one of these URLs:
 http://localhost:8888/?token=fedee94f539b0beea492bb358d549ed79025b714f3b308c4
 or http://127.0.0.1:8888/?token=fedee94f539b0beea492bb358d549ed79025b714f3b308c4

Dask-CHTC mixes HTCondor job diagnostic information into the
normal Jupyter output stream.
These messages may be helpful if your notebook server job is
unexpectedly interrupted.

Just like running jupyter lab, if you press Control-C,
the notebook server will be stopped:

^C
[C 10:40:35.962 LabApp] received signal 15, stopping
[I 10:40:35.963 LabApp] Shutting down 0 kernels
004 (7858010.000.000) 2020-07-13 10:40:36 Job was evicted.
 (0) CPU times
 Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
 Usr 0 00:00:01, Sys 0 00:00:00 - Run Local Usage
 0 - Run Bytes Sent By Job
 0 - Run Bytes Received By Job
009 (7858010.000.000) 2020-07-13 10:40:36 Job was aborted.
 Shut down Jupyter notebook server (by user karpel)

You can think of this notebook server as being tied to your ssh session.
If your ssh session disconnects (either because you quit manually, or
because it timed out, or because you closed your laptop, or any number of
other possible reasons) your notebook server will also stop.
The next section will discuss how to run your notebook server in a more
persistent manner.

Using the start, status, and stop subcommands

The start subcommand is similar to the run subcommand, except that
if you end the command by Control-C or your terminal session ending,
the notebook server will not be stopped.
The command will still “take over” your terminal, echoing log messages just
like the run subcommand did:

$ dask-chtc jupyter start lab
000 (7858021.000.000) 2020-07-13 10:52:51 Job submitted from host: <128.104.100.44:9618?addrs=128.104.100.44-9618+[2607-f388-107c-501-92e2-baff-fe2c-2724]-9618&alias=submit3.chtc.wisc.edu&noUDP&sock=schedd_4216_675f>
001 (7858021.000.000) 2020-07-13 10:52:51 Job executing on host: <128.104.100.44:9618?addrs=128.104.100.44-9618+[2607-f388-107c-501-92e2-baff-fe2c-2724]-9618&alias=submit3.chtc.wisc.edu&noUDP&sock=starter_5948_a76b_2713469>
[... Jupyter startup logs cut ...]
[I 10:52:56.060 LabApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 10:52:56.066 LabApp]

 To access the notebook, open this file in a browser:
 file:///home/karpel/.local/share/jupyter/runtime/nbserver-2209285-open.html
 Or copy and paste one of these URLs:
 http://localhost:8888/?token=3342f18a95d7d61c51a2b8cf80b836e932ac53f9ebdb3965
 or http://127.0.0.1:8888/?token=3342f18a95d7d61c51a2b8cf80b836e932ac53f9ebdb3965
^C

Even though we pressed Control-C, the notebook server will still be running.
We can look at the status of our notebook server job using the
status subcommand, which will show us various diagnostic information
on both the Jupyter notebook server and the HTCondor job it is running inside:

$ dask-chtc jupyter status
█ RUNNING jupyter lab
├─ Contact Address: http://127.0.0.1:8888/?token=3342f18a95d7d61c51a2b8cf80b836e932ac53f9ebdb3965
├─ Python Executable: /home/karpel/.python/envs/dask-chtc/bin/python3.7
├─ Working Directory: /home/karpel/dask-chtc
├─ Job ID: 7858021.0
├─ Last status change at: 2020-07-13 15:52:51+00:00 UTC (4 minutes ago)
├─ Originally started at: 2020-07-13 15:52:51+00:00 UTC (4 minutes ago)
├─ Output: /home/karpel/.dask-chtc/jupyter-logs/current.out
├─ Error: /home/karpel/.dask-chtc/jupyter-logs/current.err
└─ Events: /home/karpel/.dask-chtc/jupyter-logs/current.events

This may be particularly useful for recovering the contact address of a
notebook server that you started running in a previous ssh session.

To stop your notebook server, run

$ dask-chtc jupyter stop
[C 11:02:57.820 LabApp] received signal 15, stopping
[I 11:02:57.821 LabApp] Shutting down 0 kernels
004 (7858021.000.000) 2020-07-13 11:02:58 Job was evicted.
 (0) CPU times
 Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
 Usr 0 00:00:01, Sys 0 00:00:00 - Run Local Usage
 0 - Run Bytes Sent By Job
 0 - Run Bytes Received By Job
009 (7858021.000.000) 2020-07-13 11:02:58 Job was aborted.
 Shut down Jupyter notebook server (by user karpel)

What’s Next?

Once you’re able to
connect to your Jupyter notebook server,
you should move on to Dask Cluster Creation to learn how to create a
CHTCCluster.

Networking and Port Forwarding

For security reasons, most
ports [https://en.wikipedia.org/wiki/Port_(computer_networking)]
on CHTC submit and execute nodes are not open for traffic.
This means that programs that need to communicate over ports, like
the Dask distributed scheduler
or a Jupyter notebook server,
will not be able to communicate with your computer, or possibly even with
other computers inside the CHTC pool, over any given set of ports.

Port Forwarding for Jupyter Notebook Servers on Submit Nodes

A Jupyter notebook server is, essentially, a web application.
For example, when you run jupyter lab on your local machine,
you are starting up a web server that listens for internet connections on
a particular port.
You may recall seeing a message that looks like this during startup:

[I 10:52:56.060 LabApp] The Jupyter Notebook is running at:
[I 10:52:56.060 LabApp] http://localhost:8888/?token=3342f18a95d7d61c51a2b8cf80b836e932ac53f9ebdb3965
[I 10:52:56.060 LabApp] or http://127.0.0.1:8888/?token=3342f18a95d7d61c51a2b8cf80b836e932ac53f9ebdb3965

You typically visit one of those addresses using your web browser to connect the
JavaScript-based “frontend” interface to the notebook server “backend”.
The /?token=... part of each address is an authorization token;
it prevents anyone who doesn’t have it from
actually running any code on your notebook server.
The actual addresses are http://localhost:8888 and http://127.0.0.1:8888
The part before the second : is the address of the machine
(like in a normal website address),
except that in this case they are both special addresses which “loopback”
on the machine itself.
The number after the second : is the port number to talk to on the machine.
So both of these addresses are variations on “talk to port 8888 on myself”.

When you run a Jupyter notebook server on a CHTC submit node,
you’ll get the same kinds of addresses, but you won’t be able to connect to them
from the web browser on your local machine: the addresses mean “talk to myself”,
but “myself” is the submit node, not your local machine.

To work around this issue, you can “forward” a port from the submit machine
back to your local machine using ssh. A port on your machine and a port on
the submit machine will be “tied together” over your existing SSH connection.
Connecting to that port on your local machine (the “local” port)
will effectively connect to the target port of the submit machine
(the “remote” port).

There are two ways to forward ports using ssh, depending on when you know
which ports you want to forward.
If you know the local and remote port numbers ahead of time,
you can specify port forwarding using the -L argument of ssh:

$ ssh -L localhost:3000:localhost:4000 <user@hostname>

That command would connect local port 3000 to remote port 4000.
A Jupyter notebook running on port 4000 on the remote machine, like so:

$ dask-chtc jupyter run lab --port 4000
[... Jupyter startup logs cut ...]
[I 13:06:41.784 LabApp] The Jupyter Notebook is running at:
[I 13:06:41.784 LabApp] http://localhost:4000/?token=1186ba8ed4248f58338c48e3c016e192eb43f9c8d470e37d
[I 13:06:41.784 LabApp] or http://127.0.0.1:4000/?token=1186ba8ed4248f58338c48e3c016e192eb43f9c8d470e37d

Could be reached from a web browser running on your computer by going to
http://localhost:3000.
For simplicity, we recommend using the same port number for the local and remote
ports – then you can just copy-paste the address from the Juypter logs!

If you don’t know the port number ahead of time (perhaps the remote port you wanted
to use is already in use, and the Jupyter notebook server actually starts up
on port 4001), you can forward a port from an existing SSH session by opening
the “SSH command line”.
From the terminal, inside the SSH session, type ~C
(i.e., hold shift and press the ~ key, release shift, then hold shift again
and press the C key).
Your prompt should change to

ssh>

In this prompt, enter a -L argument like above and press enter:

ssh> -L localhost:3001:localhost:4001
Forwarding port.

Press enter again to return to your normal terminal prompt.
The port is now forwarded, as if you had added the -L argument to your
original ssh command.

Forwarding a Port for the Dask Dashboard

The Dask scheduler exposes a
dashboard [https://docs.dask.org/en/latest/diagnostics-distributed.html#dashboard]
as a web application.
If you are using Dask through Jupyter, the dashboard address will be shown
in the representations of both the Cluster and Client:

[image: _images/dashboard-port.png]
Programmatically, the address is available in
client.scheduler_info()['services'].

Be wary: Dask is showing an “external” address that would be appropriate for a
setup without security firewalls.
Instead of connecting to that address, you should point your web browser
(or the Dask Jupyterlab extension, for example) to something like
localhost:<port>/status, after forwarding the remote port that the dashboard
is hosted on to some local port.

Dask Scheduler and Worker Internal Networking

The Dask scheduler and workers all need to talk to each bidirectionally.
This is handled internally by Dask-CHTC, and you shouldn’t have to do anything
about it.
Please
let us know [https://github.com/JoshKarpel/dask-chtc/issues]
if you run into any issues you believe are caused by
internal networking failures.

What’s Next?

Now that you can connect to your Jupyter notebook server,
you should move on to Dask Cluster Creation to learn how to create a
CHTCCluster.

Dask Cluster Creation

Dask-CHTC’s primary job is to provide CHTCCluster, an object that manages a pool of Dask workers on the CHTC pool on your behalf. To start computing with Dask itself, all we need to do is connect our CHTCCluster to a standard dask.distributed Client. This notebook shows you how to do that.

If you are reading the notebook in the documentation, you can download a copy of this notebook to run on the CHTC pool yourself by clicking on “View page source” link in the top right, then saving the raw notebook as example.ipynb and uploading it via the Jupyter interface.

If you are running this notebook live using JupyterLab, we recommend installing the Dask JupyterLab Extension [https://github.com/dask/dask-labextension]. We’ll point out what dashboard address to point it to later in the notebook.

Create Cluster and Client

[1]:

from dask_chtc import CHTCCluster
from dask.distributed import Client

[2]:

cluster = CHTCCluster()
cluster

 CHTCCluster

 	Dashboard: http://128.104.100.44:3687/status

 Troubleshooting

Troubleshooting

Dask

unsupported pickle protocol: 5

If you get an error with the reason unsupported pickle protocol: 5,
like

distributed.protocol.core - CRITICAL - Failed to deserialize
Traceback (most recent call last):
 File "/home/karpel/miniconda3/lib/python3.7/site-packages/distributed/protocol/core.py", line 130, in loads
 value = _deserialize(head, fs, deserializers=deserializers)
 File "/home/karpel/miniconda3/lib/python3.7/site-packages/distributed/protocol/serialize.py", line 302, in deserialize
 return loads(header, frames)
 File "/home/karpel/miniconda3/lib/python3.7/site-packages/distributed/protocol/serialize.py", line 64, in pickle_loads
 return pickle.loads(x, buffers=buffers)
 File "/home/karpel/miniconda3/lib/python3.7/site-packages/distributed/protocol/pickle.py", line 75, in loads
 return pickle.loads(x)
ValueError: unsupported pickle protocol: 5
distributed.utils - ERROR - unsupported pickle protocol: 5
Traceback (most recent call last):
 File "/home/karpel/miniconda3/lib/python3.7/site-packages/distributed/utils.py", line 656, in log_errors
 yield
 File "/home/karpel/miniconda3/lib/python3.7/site-packages/distributed/client.py", line 1221, in _handle_report
 msgs = await self.scheduler_comm.comm.read()
 File "/home/karpel/miniconda3/lib/python3.7/site-packages/distributed/comm/tcp.py", line 206, in read
 allow_offload=self.allow_offload,
 File "/home/karpel/miniconda3/lib/python3.7/site-packages/distributed/comm/utils.py", line 87, in from_frames
 res = _from_frames()
 File "/home/karpel/miniconda3/lib/python3.7/site-packages/distributed/comm/utils.py", line 66, in _from_frames
 frames, deserialize=deserialize, deserializers=deserializers
 File "/home/karpel/miniconda3/lib/python3.7/site-packages/distributed/protocol/core.py", line 130, in loads
 value = _deserialize(head, fs, deserializers=deserializers)
 File "/home/karpel/miniconda3/lib/python3.7/site-packages/distributed/protocol/serialize.py", line 302, in deserialize
 return loads(header, frames)
 File "/home/karpel/miniconda3/lib/python3.7/site-packages/distributed/protocol/serialize.py", line 64, in pickle_loads
 return pickle.loads(x, buffers=buffers)
 File "/home/karpel/miniconda3/lib/python3.7/site-packages/distributed/protocol/pickle.py", line 75, in loads
 return pickle.loads(x)
ValueError: unsupported pickle protocol: 5

You are encountering an issue with mismatched Python versions between
your Dask client and the workers.
Python 3.8 introduced a new default protocol for Python’s pickle module,
which Dask uses to move some kinds of data around.
In general, you should always make sure that your Python versions match.
For this specific issue, you just need to make sure that you are using
Python 3.7 or less (or Python 3.8 or greater) for both the Dask client
and the workers.

Jupyter

Jupyter notebook server is stuck in the REMOVED state

If something goes wrong during a normal dask-chtc jupyter stop, you may
find that your notebook server will refuse to shut down.
The notebook server status will get stuck in REMOVED, like this:

$ dask-chtc jupyter status
█ REMOVED jupyter lab
├─ Contact Address: http://127.0.0.1:8888/?token=d1717bce73ebc0e54ebeb16eeeef70811ead8eaae23e213c
├─ Python Executable: /home/karpel/miniconda3/bin/python
├─ Working Directory: /home/karpel
├─ Job ID: 8138911.0
├─ Last status change at: 2020-07-19 21:34:02+00:00 UTC (23 minutes ago)
├─ Originally started at: 2020-07-19 18:57:07+00:00 UTC (3 hours ago)
├─ Output: /home/karpel/.dask-chtc/jupyter-logs/current.out
├─ Error: /home/karpel/.dask-chtc/jupyter-logs/current.err
└─ Events: /home/karpel/.dask-chtc/jupyter-logs/current.events

Because you can only run one notebook server at a time, this will prevent you
from launching a new notebook server.
To resolve this issue, you should run dask-chtc jupyter stop --force:

$ dask-chtc jupyter stop --force
000 (16453.000.000) 2020-07-21 11:58:25 Job submitted from host: <10.0.1.43:40415?addrs=10.0.1.43-40415+[2600-6c44-1180-1661-99fa-fc04-10e3-fd8d]-40415&alias=JKARPEL&noUDP&sock=schedd_20423_5f31>
001 (16453.000.000) 2020-07-21 11:58:27 Job executing on host: <10.0.1.43:40415?addrs=10.0.1.43-40415+[2600-6c44-1180-1661-99fa-fc04-10e3-fd8d]-40415&alias=JKARPEL&noUDP&sock=starter_20464_7d39_11>
005 (16453.000.000) 2020-07-21 11:58:30 Job terminated.
 (0) Abnormal termination (signal 9)
 (0) No core file
 Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
 Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
 Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
 Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage
 0 - Run Bytes Sent By Job
 0 - Run Bytes Received By Job
 0 - Total Bytes Sent By Job
 0 - Total Bytes Received By Job

Always try stopping your notebook server with a plain stop command before
trying stop --force;
--force does not give the notebook server a chance
to shut down cleanly, so your Jupyter kernels may be interrupted while in the
middle of an operation.

 Configuration

Configuration

Dask-CHTC uses
Dask’s configuration system [https://docs.dask.org/en/latest/configuration.html]
for most configuration needs.
Dask stores configuration files in
YAML format [https://en.wikipedia.org/wiki/YAML]
in the directory ~/.config/dask (where ~ means “your home directory”).
Any YAML files in this directory will be read by Dask when it starts up
and integrated into its runtime configuration.

Configuring Dask-CHTC

Dask-CHTC’s CHTCCluster is a type of Dask-Jobqueue cluster, so it is
configured through
Dask-Jobqueue’s configuration system [https://jobqueue.dask.org/en/latest/configuration-setup.html].

This is the default configuration file included with Dask-CHTC:

jobqueue:
 chtc:
 # The internal name prefix for the Dask workers
 name: dask-worker

 # The HTCondor JobBatchName for the worker jobs.
 batch-name: dask-worker

 # Worker job resource requests and other options.
 cores: 1 # Number of cores per worker job
 gpus: null # Number of GPUs per worker job
 memory: "2 GiB" # Amount of memory per worker job
 disk: "10 GiB" # Amount of disk per worker job
 processes: null # Number of Python processes per worker (null lets Dask decide)

 # Whether to use GPULab machines.
 gpu-lab: false

 # What Docker image to use for the Dask worker jobs.
 worker-image: "daskdev/dask:latest"

 # Send HTCondor job log files to this directory
 log-directory: null

 # Extra command line arguments for the Dask worker.
 extra: []

 # Extra environment variables for the Dask worker.
 env-extra: []

 # Extra submit descriptors; not all are available because some are used internally.
 job-extra: {}

 # Extra options for the Dask scheduler
 scheduler-options: {}

 # Number of seconds to die after if the worker can not find a scheduler.
 death-timeout: 60

 # INTERNAL OPTIONS BELOW
 # You probably don't need to change these!

 # Directory to spill extra worker memory to (null lets Dask decide)
 local-directory: null

 # Controls the shebang of the job submit file that jobqueue will generate.
 shebang: "#!/usr/bin/env condor_submit"

 # Networking options.
 interface: null

A copy of this file (with everything commented out) will be placed in
~/.config/dask/jobqueue-chtc.yaml the first time you run Dask-CHTC.
Options found in that file are used as defaults for the runtime arguments of
CHTCCluster and its parent classes in Dask-Jobqueue, starting with
dask_jobqueue.HTCondorCluster [https://jobqueue.dask.org/en/latest/generated/dask_jobqueue.HTCondorCluster.html#dask_jobqueue.HTCondorCluster].
You can override any of them at runtime by passing different arguments to the
CHTCCluster constructor.

Dask-CHTC provides a command line tool to help inspect and edit its
configuration file. For full details, run dask-chtc config --help.
The subcommands of dask-chtc config will (among other things)
let you show the contents of the configuration file, open it in your editor,
and reset it to the package defaults.

Warning

Dask-CHTC is prototype software, and the names and meanings of configuration
options are not necessarily stable. Be prepared to reset your configuration
to track changes in Dask-CHTC!

Configuring the Dask JupyterLab Extension

The Dask JupyterLab extension [https://github.com/dask/dask-labextension]
lets you view the Dask scheduler’s dashboard as part of your JupyterLab.
It can also be used to launch a Dask cluster.
To configure the cluster that it launches, you write a Dask configuration
file, typically stored at ~/.config/dask/labextension.yaml.
Here is an minimal configuration file for launching a CHTCCluster:

labextension:
 factory:
 module: 'dask_chtc'
 class: 'CHTCCluster'
 kwargs: {}
 default:
 workers: null
 adapt: null

Configuration options set via ~/.config/dask/jobqueue-chtc.yaml will be
honored by the JupyterLab extension; note that you are specifying arguments
in the extension configuration file as if you were calling the
CHTCCluster constructor directly.

To connect to the cluster created by the lab extension, you must pass
the appropriate security options through.
First, get the security options:

from dask_chtc import CHTCCluster

sec = CHTCCluster.security()

Then, (after creating a new cluster by clicking +NEW),
click the <> button to insert a cell with the right cluster address:

[image: _images/labextension.png]
And modify it to use the security options
by adding the security keyword argument:

from dask.distributed import Client

client = Client("tls://128.104.100.44:3003", security=sec)
client

 Building Docker Images for Dask-CHTC

Building Docker Images for Dask-CHTC

Dask-CHTC runs all Dask workers inside Docker containers, which are built from
Docker images.
This guide won’t cover how to build Docker images; innumerable tutorials are
available on the
CHTC website [http://chtc.cs.wisc.edu/guides.shtml]
and the wider internet,
and the actual
Docker docs [https://docs.docker.com/engine/reference/builder/]
are usually useful.
Our focus will be on the specific requirements for images for use with Dask-CHTC.

The main requirements are:

	dask needs to be installed in your image so that it can run a Dask worker.
You’ll also want to make sure various associated libraries
like lz4 and blosc (named python-blosc in conda) are
installed.
You’ll get warnings when the workers start for missing libraries
or version mismatches in these associated libraries;
we recommend making sure they are all resolved.

	Any library you use in your application must also be available on the workers.
For example, if you import foobar in your code, the foobar package
must be available for import for the client as well as all of the workers.
(You can be a little more minimal than this, but it’s not worth it
– just make sure everything is installed.)

	Any image you use must have a tini entrypoint (see
their README [https://github.com/krallin/tini#tini---a-tiny-but-valid-init-for-containers]
for details on what tini does).
This ensures that the HTCondor job that your Dask worker is running in
is able to shut down cleanly when the Dask client orders it to stop.
If you don’t do this, you may notice “zombie” workers that remain alive
even after being told to stop, either by the Dask cluster itself or by
“brute force” stopping them with condor_rm.

A few other considerations to keep in mind:

	Images must be
pushed to Docker Hub [https://docs.docker.com/engine/reference/commandline/push/]
for HTCondor to use them.
If you push your image to yourname/repository:tag, then you should set
worker_image = "yourname/repository:tag" in your CHTCCluster.

	Always use an explicit tag; do not rely on latest.
HTCondor caches Docker images by tag, not by SHA, so if you change your image
without changing its tag, you may get an older version of your image if your
worker lands on an HTCondor slot that you have used in the recent past.

	Minimize the size of your Docker images.
Although workers with small resource requests will likely find a slot in
under a minute, it may take several minutes to download a large Docker image.
Most useful base images are already a few GB, so try to keep the final image
size under 5 GB.

Images for CPU Workers

Docker images for Dask workers that don’t need to use GPUs are mostly the same
as normal Docker images. Dask provides a nice
image [https://hub.docker.com/r/daskdev/dask] which you can use directly
or build off of (the default image for Dask-CHTC is daskdev/dask:latest).

Here’s an example Dockerfile that installs some extra conda packages on
top of daskdev/dask:

Inherit from a Dask image. Make sure to use a specific tag, but not
necessarily this one - it's good to keep up to date!
FROM daskdev/dask:2.20.0

Install various extra Python packages.
RUN : \
 && conda install --yes \
 xarray \
 dask-ml \
 && conda clean --yes --all \
 && :

Note

The trick used in the long RUN statement:

RUN : \
 && ... \
 && :

is to help keep your diffs clean.
: is a no-op command in bash.
Try it out!

Images for GPU Workers

If you want your workers to use GPUs,
you must use a Docker image that inherits from an NVIDIA CUDA image
(their Docker Hub page [https://hub.docker.com/r/nvidia/cuda/]).
If you don’t inherit from this image, your Dask worker will not be able to
use GPUs even if it lands on a HTCondor slot that has one
(the image works in concert with a special distribution of the Docker daemon
itself published by NVIDIA that CHTC runs on its GPU nodes).

You could inherit from one of those images yourself, or inherit from an image
that itself inherits from nvidia/cuda.
For example, the
PyTorch Docker images [https://hub.docker.com/r/pytorch/pytorch/]
inherit from the NVIDIA images, so you could use them as your base image.

Here’s an example Dockerfile that builds off the PyTorch image
by installing
Dask-ML [https://ml.dask.org/]
and
Skorch [https://skorch.readthedocs.io/en/latest/?badge=latest]:

Inherit from a PyTorch image. Make sure to use a specific tag, but not
necessarily this one - it's good to keep up to date!
FROM pytorch/pytorch:1.5.1-cuda10.1-cudnn7-runtime

Install various extra Python packages.
RUN : \
 && conda install --yes \
 dask \
 dask-ml \
 lz4 \
 python-blosc \
 tini \
 && conda install --yes \
 -c conda-forge \
 skorch \
 && conda clean --yes --all \
 && :

Always run under tini!
See https://github.com/krallin/tini if you want to know why.
(The daskdev/dask image used above already does this.)
ENTRYPOINT ["tini", "--"]

 API Reference

API Reference

	
class dask_chtc.CHTCCluster(*, worker_image=None, gpu_lab=False, gpus=None, batch_name=None, python='./entrypoint.sh python3', **kwargs)

	A customized dask_jobqueue.HTCondorCluster [https://jobqueue.dask.org/en/latest/generated/dask_jobqueue.HTCondorCluster.html#dask_jobqueue.HTCondorCluster] subclass for
spawning Dask workers
in the CHTC HTCondor pool.

It provides a variety of custom arguments designed around the CHTC pool,
and forwards any remaining arguments to
dask_jobqueue.HTCondorCluster [https://jobqueue.dask.org/en/latest/generated/dask_jobqueue.HTCondorCluster.html#dask_jobqueue.HTCondorCluster].

	Parameters

	
	worker_image (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The Docker image to run the Dask workers inside.
Defaults to daskdev/dask:latest
(Dockerfile [https://hub.docker.com/r/daskdev/dask/dockerfile]).
See this page
for advice on building Docker images for use with Dask-CHTC.

	gpu_lab (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, workers will be allowed to run on GPULab nodes.
If this is True, the default value of gpus becomes 1.
Defaults to False.

	gpus (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – The number of GPUs to request.
Defaults to 0 unless gpu_lab = True,
in which case the default is 1.

	batch_name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The HTCondor JobBatchName to assign to the worker jobs.
This can be helpful for more sensible output for condor_q.
Defaults to "dask-worker".

	python (str [https://docs.python.org/3/library/stdtypes.html#str]) – The command to execute to start Python inside the worker job.
Only modify this if you know what you’re doing!

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments,
like cores or memory,
are passed to dask_jobqueue.HTCondorCluster [https://jobqueue.dask.org/en/latest/generated/dask_jobqueue.HTCondorCluster.html#dask_jobqueue.HTCondorCluster].

	
adapt(*args, minimum_jobs=None, maximum_jobs=None, **kwargs)

	Scale Dask cluster automatically based on scheduler activity.

	Parameters

	
	minimum (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of workers to keep around for the cluster

	maximum (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of workers to keep around for the cluster

	minimum_memory (str [https://docs.python.org/3/library/stdtypes.html#str]) – Minimum amount of memory for the cluster

	maximum_memory (str [https://docs.python.org/3/library/stdtypes.html#str]) – Maximum amount of memory for the cluster

	minimum_jobs (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of jobs

	maximum_jobs (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of jobs

	**kwargs – Extra parameters to pass to dask.distributed.Adaptive

See also

	dask.distributed.Adaptive
	for more keyword arguments

	
scale(n=None, jobs=0, memory=None, cores=None)

	Scale cluster to specified configurations.

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – Target number of workers

	jobs (int [https://docs.python.org/3/library/functions.html#int]) – Target number of jobs

	memory (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target amount of memory

	cores (int [https://docs.python.org/3/library/functions.html#int]) – Target number of cores

	
classmethod security()

	Return the Dask Security object used by Dask-CHTC.
Can also be used to create a new Dask Client with the correct
security settings for connecting to your workers, e.g. if you started
your CHTCCluster via the Dask JupyterLab extension.

 CLI Reference

CLI Reference

Dask-CHTC provides a command line tool called dask-chtc.

View the available sub-commands by running:

dask-chtc --help # View available commands

Here’s the full documentation on all of the available commands:

dask-chtc

Command line tools for Dask-CHTC.

dask-chtc [OPTIONS] COMMAND [ARGS]...

Options

	
-v, --verbose

	Show log messages as the CLI runs.

	
--version

	Show the version and exit.

config

Inspect and edit Dask-CHTC’s configuration.

Dask-CHTC provides a Dask/Dask-Jobqueue configuration file which provides
default values for the arguments of CHTCCluster.
You can use the subcommands in this group to
show, edit, or reset
the contents of this configuration file.

See https://docs.dask.org/en/latest/configuration.html#yaml-files
for more information on Dask configuration files.

dask-chtc config [OPTIONS] COMMAND [ARGS]...

edit

Opens your preferred editor on the configuration file.

Set the EDITOR environment variable to change your preferred editor.

dask-chtc config edit [OPTIONS]

path

Echo the path to the configuration file.

dask-chtc config path [OPTIONS]

reset

Reset the configuration file’s contents.

dask-chtc config reset [OPTIONS]

Options

	
--yes

	Confirm the action without prompting.

show

Show the contents of the configuration file.

To show what Dask actually parsed from the configuration file,
add the –parsed option.

dask-chtc config show [OPTIONS]

Options

	
--parsed

	Show the parsed Dask config instead of the contents of the configuration file.

jupyter

Run a Jupyter notebook server as an HTCondor job.

Do not run Jupyter notebook servers on CHTC submit nodes except by
using these commands!

Only one Jupyter notebook server can be created by this tool at a time.
The subcommands let you create and interact with that server
in various ways.

The “run” subcommand runs the notebook server as if you had started it
yourself. If your terminal session ends, the notebook server will also stop.

The “start” subcommand runs the notebook server as a persistent HTCondor
job: it will not be removed if your terminal session ends.
The “status” subcommand can then be used to get information about your
notebook server (like its contact address, to put into your web browser).
The “stop” subcommand can be used to stop your started notebook server.

dask-chtc jupyter [OPTIONS] COMMAND [ARGS]...

run

Run a Jupyter notebook server as an HTCondor job.

The Jupyter notebook server will be connected to your terminal session:
if you press Ctrl-c or disconnect from the server, your notebook server
will end.

To start a notebook server that is not connected to your terminal session,
use the “start” subcommand.

Extra arguments will be forwarded to Jupyter.
For example, to start Jupyter Lab on some known port, you could run:

dask-chtc jupyter run lab –port 3456

dask-chtc jupyter run [OPTIONS] [JUPYTER_ARGS]...

Arguments

	
JUPYTER_ARGS

	Optional argument(s)

start

Start a Jupyter notebook server as a persistent HTCondor job.

Just like the “run” subcommand, this will start a Jupyter notebook server
and show you any output from it.
Unlike the “run” subcommand,
the Jupyter notebook server will not be connected to your terminal session:
if you press Ctrl-c or disconnect from the server, your notebook server
will continue running (though you will stop seeing output from it).

You can see the status of a persistent notebook server started by this
command by using the “status” subcommand.

To start a notebook server that is connected to your terminal session,
use the “run” subcommand.

Extra arguments will be forwarded to Jupyter.
For example, to start Jupyter Lab on some known port, you could run

dask-chtc jupyter start lab –port 3456

dask-chtc jupyter start [OPTIONS] [JUPYTER_ARGS]...

Arguments

	
JUPYTER_ARGS

	Optional argument(s)

status

Get information about your running Jupyter notebook server.

If you have started a Jupyter notebook server in the past and need to
find it’s address again, use this command.

If you are trying to shut down your notebook server job and it is stuck in
the REMOVED state, try running “dask-chtc jupyter stop –force”.

dask-chtc jupyter status [OPTIONS]

Options

	
--raw

	Print the raw HTCondor job ad instead of the formatted output.

stop

Stop a Jupyter notebook server that was started via “start”.

If the –force option is given, the notebook server will be killed without
giving it time to shutdown cleanly. We recommend always trying a normal stop
first, then stopping it again with –force only if it is stuck in the
REMOVED state for more than a few minutes
(use the “status” subcommand to see its current state).

dask-chtc jupyter stop [OPTIONS]

Options

	
-f, --force

	Stop your notebook server without giving it a chance to clean up.

 Index

Index

 Symbols
 | A
 | C
 | D
 | J
 | S

Symbols

 	
 	
 --force

 	dask-chtc-jupyter-stop command line option

 	
 --parsed

 	dask-chtc-config-show command line option

 	
 --raw

 	dask-chtc-jupyter-status command line option

 	
 --verbose

 	dask-chtc command line option

 	
 	
 --version

 	dask-chtc command line option

 	
 --yes

 	dask-chtc-config-reset command line option

 	
 -f

 	dask-chtc-jupyter-stop command line option

 	
 -v

 	dask-chtc command line option

A

 	
 	adapt() (dask_chtc.CHTCCluster method)

C

 	
 	CHTCCluster (class in dask_chtc)

D

 	
 	
 dask-chtc command line option

 	--verbose

 	--version

 	-v

 	
 dask-chtc-config-reset command line option

 	--yes

 	
 dask-chtc-config-show command line option

 	--parsed

 	
 	
 dask-chtc-jupyter-run command line option

 	JUPYTER_ARGS

 	
 dask-chtc-jupyter-start command line option

 	JUPYTER_ARGS

 	
 dask-chtc-jupyter-status command line option

 	--raw

 	
 dask-chtc-jupyter-stop command line option

 	--force

 	-f

J

 	
 	
 JUPYTER_ARGS

 	dask-chtc-jupyter-run command line option

 	dask-chtc-jupyter-start command line option

S

 	
 	scale() (dask_chtc.CHTCCluster method)

 	
 	security() (dask_chtc.CHTCCluster class method)

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Dask-CHTC

_images/example_17_0.png
(0,0)

add

(0,0)

transpose

(0,0)

0,1)

0,1)

transpose

(1. 0)

(1,0)

@
0,1)

0,2)

i

0,2) 1,1
transpose add
(2. 0) (2,0) 1,1
[Y
@ ones transpose
2) (1, 1)

2,1

i

2,1 2,2)
transpose add
(1. 2) 1,2) 2,2)
[Y
@ ones transpose
1) (2,2)

_images/labextension.png
CLUSTERS C + NEW

CHTCCluster 2

‘Scheduler Address: tls//128.104.100.44:3003
Dashboard URL: hitp:/128.104.100.44:8787/status
Number of Cores: 5

Memory: 10.74 GB

Number of Workers: 5

Minimum Workers: 5

Maximum Workers: 10

_images/dashboard-port.png
I 21:

cluster = CHTCCluster()
cluster

CHTCCluster

« Dashboard: http://128.104.100.44:3693/status

client = Client(cluster)

client
Client Cluster
‘Scheduler: tcp//128.104.100.44:3270 Workers: 0

Dashboard: niip:/128.104.100.44:3693/status Cores: 0
Memory: 08

_static/file.png

_static/dashboard-port.png
I 21:

cluster = CHTCCluster()
cluster

CHTCCluster

« Dashboard: http://128.104.100.44:3693/status

client = Client(cluster)

client
Client Cluster
‘Scheduler: tcp//128.104.100.44:3270 Workers: 0

Dashboard: niip:/128.104.100.44:3693/status Cores: 0
Memory: 08

_static/labextension.png
CLUSTERS C + NEW

CHTCCluster 2

‘Scheduler Address: tls//128.104.100.44:3003
Dashboard URL: hitp:/128.104.100.44:8787/status
Number of Cores: 5

Memory: 10.74 GB

Number